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The temporal evolution of a resonant triad of wave components in a parallel shear 
flow has been investigated a t  second order in the wave amplitudes by Craik (1971) 
and Usher & Craik (1974). The present work extends these analyses to include 
terms of third order and thereby develops the resonance theory to the same order 
of approximation as the non-resonant third-order theory of Stuart (1960, 1962). 

Asymptotic analysis for large Reynolds numbers reveals that the magnitudes 
of the third -order interaction coefficients, like certain of those at second order, are 
remarkably large. The implications of this are discussed with particular reference 
to the roles of resonance and of three-dimensionality in nonlinear instability and 
to the range of validity of the perturbation analysis. 

1. Introduction 
The pioneering work of Stuart (1960) on the nonlinear stability of parallel flows 

concerned the temporal evolution of a single wave component, including terms 
of third order in the wave amplitude. The third-order terms derive from the inter- 
action of the wave with both its second harmonic and the second-order modifica- 
tion which it induces in the primary flow. The equation governing the complex 
wave amplitude A(t )  is of the now familiar form 

dA/d t  = aclA + h / A  p, (1.1) 
where t denotes time, acl is the (real) exponential growth or decay rate predicted 
by linear theory and h is the Landau constant, which is generally complex. It is 
well known that the effect of the nonlinear term depends crucially on the sign 
of the real part A, of A. Numerical calculations of h for plane Poiseuille flow and 
plane Couette-Poiseuille flow have been carried out by Reynolds & Potter (1 967) 
and by Pekeris & Shkoller (1967, 1969), who found that, sufficiently near the 
critical Reynolds number R, of linear theory, A, is positive, indicating that these 
flows exhibit finite amplitude subcritical instability. 
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Corresponding analyses of spatial evolution (Watson 1962) and of the spatial- 
temporal evolution of a localized disturbance (in the series of papers by Hocking, 
Stewartson and Stuart 1971-72) also reveal the importance of the sign of A,. At 
Reynolds numbers slightly greater than Re the analyses of Stewartson & Stuart 
(1971), Hocking, Stewartson & Stuart (1972) and Davey, Hocking & Stewartson 
(1 974) together yield a correct description of t,he development of sufficiently small 
but otherwise arbitrary localized disturbances, since an initial period of develop- 
ment governed by linear theory results in the emergence of a single dominant 
(but modulated) wave mode. However, for larger initial disturbances, the period 
of linear development may be insufficient to suppress all other wave modes, and 
(1.1) or its spatial-temporal counterpart need not apply. Also, for R < R, one 
cannot invoke linear theory as a means of singling out the least damped mode 
and then consider its nonlinear evolution. Accordingly, a ' dominant-mode ' non- 
linear theory for R < Re relates only to a rather restricted type of initial disturb- 
ance which is itself dominated by a single wave component. 

Stuart (1962), Benney & Lin (1960) and Benney (1961, 1964) have examined 
cases where two wave modes interact at  third order. These two modes comprise 
a two-dimensional plane wave and a three-dimensional wave wit'h the seine 
streamwise wavenumber and with a prescribed spanwise periodicity (the latter 
wave may be thought of as the sum of two identical oblique plane waves propa- 
gating at equal and opposite angles to the stream direction). Their interaction a t  
third order yields two coupled equations for the evolution of their amplitudes, 
containing four third-order interaction coefficients instead of the single Landau 
constant of (1.1); see Stuart [1962, equations (4.1) and (4.2)]. Examination of 
this particular form of disturbance was largely prompted by the experimental 
work of Klebanoff & Tidstrom (1959) and Klebanoff, Tidstrom & Sargent (1962) 
on the growth of three-dimensionality in unstable boundary layers. 

In an attempt to explain the development of subharmonic disturbances in 
unstable jets and shear layers, Kelly (1968) examined resonance among two- 
dimensional waves in several inviscid shear flows. Also, Raetz (1959) f i s t  showed 
that Tollmien-Schlichting waves might interact resonantly in boundary layers. 

Three-dimensional resonant interactions in shear flows were examined by 
Craik (1971) and Usher & Craik (1974), hereafter denoted by I and I1 for brevity, 
and it is from these papers that the present work has developed. They concern 
the evolution of a dominant triad of plane waves which interact resonantly 
at second order. The type of triad chosen comprises a downstream-propagating 
plane wave and two oblique plane waves propagating a t  equal and opposite 
angles to the flow direction. Because of the resonance condition, the downstream 
wavenumber of these oblique waves is just hatfthat of the two-dimensional wave. 
It is shown in I that triads of this form are likely to exist for a large class of shear 
flows and particular examples are given for the Blasius boundary layer and a 
piecewise-linear boundary-layer profile. 

To confine attention to triads of this special form is less restrictive than might 
at first appear. For, as shown in I, the components of such triads interact particu- 
larly strongly at  large Reynolds numbers, owing to a powerful nonlinear 
mechanism in the vicinity of the critical layer, where the downstream phase 
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velocity of the waves equals the velocity of the primary flow (for such triads, the 
respective critical layers of the three waves necessarily coincide at resonance; for 
any other resonant triad, the critical layers are normally distinct and the non- 
linear critical-layer mechanism is less powerful). This mechanism may transfer 
additional energy from the mean flow to the waves, and particularly favours the 
growth of the oblique-wave components. Accordingly, it may play a significant 
part in the spontaneous development of three-dimensionality in unstable flows. 

The interaction equations for the temporal evolution of the respective complex 
wave amplitudes A, (i = 1 , 2 , 3 )  are of the form [see 11, equations (4.6)] 

dA,/dt = +acr A ,  + a, A ,  A: ,I 
dA&B = 4 0 ~ 1  A, + a2 A ,  A:, 

dA&t = aEIA,+a,A,A,, 

where terms of third and higher order in the wave amplitudes are neglected. 
Here, * denotes a complex conjugate, the two-dimensional wave is that with 
amplitude A,, and aEI and 4acI are the linear growth or decay rates of the two- 
dimensional and oblique waves respectively. There are three (usually complex) 
second-order interaction coefficients a$ (i = 1 , 2 , 3 )  but, because of symmetry, 
a, = a,. Asymptotic analysis for large R (in I, 5 4) reveals that lal\ and la2\ are 
surprisingly large, being O(R) while la,\ remains O(1). This implies that a 
mechanism is available for preferential amplification of the oblique waves. It is 
also of interest that when cI = EI = 0 equations (1.2) have a particular solution 
(given in I, $7)  for which all three waves attain an infinite amplitude after a 
Jinite time (except for the special case arg a, + arg a2 = & n, for which the total 
wave energy remains constant). This is reminiscent of the ‘explosjve instability ’ 
of plasma physics (Sagdeev & Gdeev 1969) and the ‘instability burst’ of Hocking 
et al. (1972). Of course, the equations cease to be valid approximations before the 
singularity is attained, but it is at  least plausible that these results signify the 
existence of genuine physical phenomena characterized by ‘ superexponential ’ 
growth of the disturbance energy. 

It is clearly of value to extend the analysis for resonant triads to third order 
in the wave amplitudes in order to permit a proper comparison with the non- 
resonant case. The third-order equations must have the form 

,/at = Q.CI A2 + aZA3A: + A,@,, I A ,  I + a22 I A 2 I !a + a23 I A31 2, , ( 1 * 3) i dA,/dt = &wIA, + a1 A3 A,* + Ai(a1, I + a12 1-421 + a13 /A31 2, 

dA&t = +A,(a,, lAi12+a3z1Az12+a33 IA312), 

and it may be inferred from symmetry that 

all = a2,, a,, = a239 alp = as,, %1 = 

The object of the analysis is therefore to determine the five third-order inter- 
action coefficients a,,, a12, al,, a,, and a,,. We note that a,, is just the Landau 
constant h for the two-dimensional wave A,. It is of special interest to discover 
whether, for large R, these interaction coefficients have large magnitudes (pro- 
portional to some positive power of R) like the second-order coefficients a, and a,. 
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Such information furnishes greater insight into the nature of the nonlinear 
mechanisms of instability and indicates the probable domain of validity of the 
perturbation analysis for large R. 

2. Formulation of the problem 
The physical situation is as in 11, to which the reader is referred for fuller 

details. All variables are dimensionless relative to characteristic length and 
velocity scales L and V and the constant fluid density p. The primary velocity 
profile 

confined between plane boundaries at x3 = 0) I (where 1 may be taken as unity 
for channel flows and infinity for boundary layers) is perturbed by three waves 
with xl, x,, t perjodicities of the forms exp i0, (j = 1 ,2 ,3 )  respectively, where 

a, j9 and cR being real constants. Since 8,+8, = 8, these waves comprise a 
resonant triad, and we here assume that the primary flow is such that a triad of 
this kind does indeed exist. The boundary conditions for the problem will 
normally be 

[u, V’ w] = [U(x3), 0’01 (0 < x3 < I) 

el = gax, + px2 - &cRt, e, = gaxl - px2 - gac,t, e, = - aCRt, 

(2.1) U-U(X3) = v = w = 0 (5, = 0, l ) .  

For reasons outlined in 11, 3 6 we here adopt a more usual ‘direct’ analysis 
based on the Navier-Stokes equations rather than the variational method of 11. 
We denote by A a (dimensionless) number characteristic of the wave amplitudes 
and by O(A3) those terms of third or higher order in the wave amplitudes. We 
then write the Cartesian velocity components (a, v, w) and the pressure p of the 
Derturbed flow as 
I 

(uj exp i8, + ujj exp 2i0,) 
j=l 
Y I + uj3 exp i(8, + 8,) + u1 -,exp i(O1 - 8,) + O(A3), ( 2 . 2  a) 

j=l 
2 

w = G + Re vj exp isj + 2 (vjj exp 2i8, + vj3 exp i(Oj + 8,)) (I j=1 j=1 

+vl -,expi(@,- S,,\ + 0(A3) ,  (2.2 b )  
3 2 
(wj exp isj + wjj exp 2iOj)  + C wj3 exp i(0, + 8,) 

j=1 

2 

p = xlpI + + Re (pj exp iOj  +pjj exp 2iOj) + 2 pj3 exp i(Sj + 8,) 
j=1 j=l 

+pl +,exp i(8, - 8,) + O(A3). ( 2 . 2  d )  I 
The terms [uj, vj, wj,pf] exp iOj represent the three waves, pI is the imposed longi- 
tudinal pressure gradient, z) 5 and are modifications to the mean velocity and 
pressure owing to the nonlinear Reynolds stresses and the remaining terms repre- 
sent the second-order (sum and difference) harmonics. We shall omit all O(A3) 
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terms with exponents not equal to one of the isj, but retain O(A3) terms with 
these periodicities. 

Because of the directional properties of the various wavelike components it is 
best to write 

(2 .3 )  i U]  = y-1(+aa1 -pol ) ,  Wl = y-ypa, + &4), 
Ull = y - l ( 4 a ~ . , ,  - p a l l ) ,  w11 = Y-l(paII +-w,,), 
2113 = Yc1(%CLa13-~pa13), ‘013 = Y&’(/%3+&’13), 

where y = (&-2++-2)&, yo 5z ($.“+-2)H; 

then the quantities with a caret represent the velocity components perpendicular 
and parallel to the respective ‘wave crests ’. Corresponding transformations for 
the components uz, v2, uZ2, vZ2, ~ 2 3  and vZ3 are obtained on replacing p by - p  
above. We then introduce series expansions in powers of the (small but finite) 
complex wave amplitudes A,(t)  (j = 1,2 ,3)  of the members of the resonant triad, 
namely 

(2.4 e )  

where i a n d j  take the values I ,  2 and 3 and k takes the values 1 and 2 .  Here, 
po and p, are constants and all other symbols introduced denote functions of 
x3 only. Corresponding expansions for the remaining variables a k ,  u3, a k j ,  u3, and 
v1 --2 are found from the continuity relations 

where D = ajax,. Since the governing equations were formed from the Navier- 
Stokes equations by elimination of the pressure terms, we do not require similar 
expansions for the components pi,  p j k  and p ,  --2. The boundary conditions for 
the various functions are readily inferred from (2 .1) .  Note that the suffixes do not 
denote Cartesian tensor indices and that no summation over repeated indices is 
implied. 

Henceforth we assume that the imposed longitudinal pressure gradient 
remains constant, so that pzg = 0 (there seems little to choose here between this 
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and the alternative assumption of constant volume flux). We also assume that 
no second-order spanwise pressure gradient can occur. In  addition, we expand 
the time derivatives of A,(,?) in the form given by (1 .3 )  involving the linear growth 
or decay rates $acz and aZI and the constant interaction coefficients ai and aij. 

Substitution into the Navier-Stokes momentum equations, linearization in 
the A,(,?) and elimination of pressure terms by cross-differentiation yields the 
equations of linear theory, namely [11, equations (5.4)] 

( 2 . 6 a )  

(2 .6b)  

( 2 . 6 ~ )  

( 2 . 7 ~ )  

(2.7 b )  

(2.7 c )  

( 2 . 7 d ,  e )  

(k = 1 , 2 ) ,  I L,[xfE.'] + $ac,L,[xfcl)] = 0 

L3[xi1)] + a&L,[Xp] = 0, 

Gk- +acI$g) = 0 

L,[XfE.'] = $icC[(E - CR) ( P - y Z )  -D2U] xp  -R-1(LP-y2)2XfE.), 

L ,[x3 (1) ] = - ~ ~ [ ( G - C R )  (D2-~2)-D2E]xb1)-  R-1(D2-~2)2X(:), 

L,[xp] E ( 0 2  - 7 2 )  xp, 
G ,  = R-l(D2 - y 2 )  $r) - +ia(U- cR)$))) + ( - i)k+1/3y-1D;iiXt), 

L5[Xf)] = ( 0 2  - a,) xy, 
and the boundary conditions at x, = 0, I are 

(2.8) 
The resultant eigenvalue problems determine the complex phase velocities 
cIz + ic, and cR + iEz,  the real parts of which must be equal in order to satisfy the 
resonance condition. We may normalize these solutions such that 

(2 .9 )  

xi1) = = $f' = 0 (i = 1 , 2 , 3 ;  k = 1 , 2 ;  X, = 0, I ) .  

(1) - (1) (1) - - (1). 
x1 - x 2  3 Yl - $2 

3. Nonlinear analysis 

recover the second-order equations 
If the second-order terms containing A, A:, A, A: and A, A, are retained, we 

L , [ ~ J e 2 ' ] + ( + a c ~ - i - a ~ ~ ) L , [ ~ ~ ~ ) ]  = F , - ~ , L , [ x : ~ ) ]  ( k  = 1, 2 ) ,  (3.1 a )  

(3 .1  b )  L3IXf'I + @-CIL~CX&')I = F3-a3LdXh1)I, 
3; = ~{(a2y-2-2)X~,)(D2--2)DX:l)* + (a2y-2- 3 ) D x p ( D 2 - y " ) p *  

- 2 ~ x ~ ~ ' " ( ~ 2 - a 2 ) x ( 3 1 ) - x ~ 1 ) * ( ~ 2 - a 2 ) ~ x g )  

- 2ia/3y-1(xi1) D2$($'* + Dxil)Dfll)* + yzxhl)@f)*)}, 

F ,  = - 9"2y-2{D[Xil)(D2-y2)X(11)] - ($7-2- 2)Dx\l'(D2--y~)x\1) 
- siOl/37-"$p(B2 - 7 2 )  2" f D $ p D x p  - y2"-2D2(xIl)$p))] 

+ 4p27@ D$il)}, (3.3) 

(3 .2 )  

which are readily shown to be identical with results I1 (5 .11)  and I1 (5 .3 )  on 
noting result (2 .9 )  and making minor changes in notation. It follows that, as 
shown in 11, the appropriate values of the second-order interaction coefficients a7 
a re 
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where Yil) and \r(31) are the solutions of the linear equations adjoint to (2.6 a, c) 
with homogeneous boundary conditions corresponding to (2.8). 

In  addition, result (2.9) ensures that the function $L2) satisfies a homogeneous 
equation, and this has only the trivial solution yY2) = 0. Consequently, all terms 
containing 

On retaining third-order terms and equating to zero the coefficients of the 
A,  IAjI2 (i,j = 1,2,3) ,  the following third-order equations are ultimately 
recovered for the functions x(t+j): 

(3.6) 

L1[~ fc5 ’ l+(~ac l+2a~l )L4[~~)]  = F k 3 - a k 3 L 4 [ ~ f ) ]  (k,Z = 1,2),  (3.7) 

(3.8) 

(3.9) 

where the operators Li[ ] are those defined above. 
The &j are lengthy expressions. In  form, they are mainly linear combinations 

of products of first- and second-order functions (i.e. those functions listed in 
table I and their complex conjugates) but those with i $: j have further terms 
proportional to the second-order interaction coefficients a$ (i = 1,2 ,3) .  Because 
the problem is symmetric with respect to the suffixes 1 and 2, it turns out that 

F21 = F12) F22 = F11, F23 = Fm F32 = F31 (3.10) 

(leaving only five independent functions qj), provided that the first-order 
solutions are normalized such that xi1) = ~ ( 2 1 )  and $il) = - $1(2‘). 

For brevity, statements of all these functions are omitted;! we only give F33, 
the simplest of the qi: 

may be omitted from the subsequent analysis. 

I L1[xJC2+’)] + ~ a ~ ~ L , [ x ~ ~ + ” ]  = Fkt - U ~ ~ L ~ [ X F ) ]  

L3[XL2+O’3 + (ac1+ OI~~)L5[x(!+~)] = F31: - u,L5[Xp] 

J%~XF)I + 3aGLiJX!i5)I = F33- a33L5[x(!)], 

Fa3 E - i04f3(D2 - d)x(:)  + iaxi1’D2f, - $xf)*(Dz - 3a2) Q&) 

- I D  2 x 3  ( 0 2  - 3a2) xi:) + pxi;) D2x‘31’* + *X(323)D3Xf)*, (3.1 I ) 

By an argument similar to that of 11, the appropriate values of the third-order 
interaction coefficients are found to be 

In order that the interaction coefficients a, and aij and the wave amplitudes 
Ai are uniquely defined, it is necessary to specify the normalizations imposed cn 
the functions xi1). Reynolds & Potter (1967) used the normalizations xi1) = - i 
and Dxbl) = -i at  the centre-line of the channel (i.e. at  x3 = 1 with I = 2) for the 
even and odd modes of plane Poiseuille flow. On the other hand, Pekeris & 
Shkoller (1967) chose xbl) = - ia and Dxf) = - ia! a t  x3 = 1 for these modes. For 
Blasius flow, computations described in the appendix to this paper by Dr I?. 
Hendriks employ the normalization xi1) = 1 at x, = 5 (j = 1,2 ,3) .  

t Copies of a supplement containing these may be obtained from the authors 01’ the 
JFM Editorial Office, DAMTP, Silver Street, Cambridge CB3 SEW. 
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For the purposes of this paper, a specific choice of normalization need not be 
made. We insist only that this choice ensures that, over most of the flow domain 
(but excluding the critical layer and viscous wall layer), the functions xy) and 
Dx‘j‘) (j = 1 , 2 , 3 )  remain O( 1)  in magnitude as R-too. This condition is met, for 
example, by the particular normalizations mentioned above. 

Clearly, the normalizations employed for the adjoint functions YL1) do not 
affect the values of ai and aij; but we note that expressions (3 .4 ) ,  (3 .5 )  and (3 .12)  
are simplified if we impose the normalizations 

We also note that interchanging the suExes 1 and 2 does not alter the values of 
theuij. Unlike results (3 .4 )  and ( 3 4 ,  where theintegrals depend only on the linear 
solutions, expressions (3.12) cannot be evaluated immediately (even in principle !) 
since they involve several second-order quantities yet to be determined. The 
governing equations for these second-order quantities are derived by extracting 
from the equations of motion the appropriate terms quadratic in Aj(t)  and their 
complex conjugates. These are as follows. 

The second-order modifications to the mean flow, designated by fj and fk, 
satisfy 

(3 .13b)  

( 3 . 1 3 ~ )  2aEI f3 - R-lD2f3 = 4 Re ( - &~-~xhl)* D2 X I  (3l) , 
while the timewise-aperiodic but spanwise-varying terms, designated by xi? 
and $i2L2, satisfy 

acI(D2- 4p2)xi2LB- R-l(D2- 4p2)2xi2?2 

= p2y-4D[4p2  IDi l ’12+a2~2(I~i1  1 2 +  [$$‘)I2) -y2D2(Ixi1)I2)] 

+ I m  (olpr-3D[( 3p2 - $a2) $I1) D ~ i l ) ’ ~  - y2D$\1)x(11)*] - 4a,99r1$!!)x~l)*),  

( 3 . 1 4 ~ )  

=py-lRe(-?C.l]-)D x1 (I)* + D$!f) xi1)*} + iSay-2 Re (ixil) 0 2  x1 a)* 1. (3.14b) 

We note that the latter terms represent a spanwise-periodic ‘longitudinal- 
vortex’ distortion of the primary flow, like that studied by Benney & Lin (1960) 
and Benney (1961,1964) .  The results xi1) = xi1’ and = - $L1) have been used 
to simplify the right-hand sides. 

ac,$i2L2- R-1(D2-4/32)$i2L2+xi222DU 

The second-order modification Pi2) to the wave of periodicity i0, satisfies 

[$ia(U - cn) + +acI + aE1] $’:’ - R-1( 0 2  - 7 2 )  $i2) - py-1Diixi2) 
- - -a1$i1)+ $@Il)*Dx&l) - ~y-2($a2-P2))xa)D$Il)* 

- &~a-ly-3((r2x~l)* DZx(31) - a 2 ~ f ) D 2  x1 (1) * 1. (3 .15)  

This is the component parallel to the wave crests, and is related to the per- 
pendicular component xi2’, which satisfies (3.1 u). Note the appearance of the 
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second-order interaction coefficient a, on the right-hand side. The correspond- 
ing equation for $k2) confirms that $b2) = -$i2), as might be expected. 

The equations for the xi2' are given by (3.1), (3.4) and (3.5). The equations for 
the remaining nine second-order functions of the type xi;) or $i;) are omitted for 
brevity but are stated in Usher (1974) (closely related equations are also given 
by Stuart 1962, 8 3). The form of the equations for the xi;) is somewhat similar to 
that of (3.1), and that of the equations for I)$$) resembles (3.15). The right-hand 
sides are known from linear theory, but differ from (3.1) and (3.15) in that no 
linear terms (in a j )  are present and that no complex-conjugate functions appear. 
These equations are stated in full in the unpublished supplement available from 
the Editorial Office and authors. 

4. Asymptotic theory 
In order to make further progress, one may employ numerical computation to 

evaluate the interaction coefficients for particular cases, as was done by Reynolds 
& Potter (1967) and Pekeris & Shkoller (1967, 1969); effectively, they computed 
a33 for Poiseuille and Couette-Poiseuille flow. Alternatively, one may seek further 
simplifying assumptions which, a t  the expense of precise accuracy, enable the 
general analysis to be taken further. We adopt the latter approach in developing 
an asymptotic theory which, under well-defined conditions, yields valid approxi- 
mations for sufficiently large values of the Reynolds number R. Such a develop- 
ment constitutes a logical extension to nonlinear stability theory of the asymp- 
totic analysis so effectively applied to linear theory, notably by Lin (1955) and 
Reid (1965). 

The asymptotic analysis for the second-order problem was constructed in I, 
where explicit asymptotic approximations were given for the second-order 
coefficients ui (I, $9 4 ,5) .  It turns out that lull, la,l = O(R) while la,[ remains 
O(1) as R-tco. The O ( R )  magnitude of a1 and a2 arises because the integral of 
Yil)Fl in (3.4) is dominated by a large contribution from the vicinity of the 
'critical layer ', where the flow velocity 'il(x3) nearly equals the downstream 
propagation velocity cR of the waves. When there is more than one such layer, as 
in Poiseuille flow, the contributions from both layers must of course be retained. 
In  I, it was assumed that there is a single critical layer and that the velocity 
profile Z ( x 3 )  is of boundary-layer type. Here, for simplicity, we discuss the contri- 
bution from a single critical layer, but extension of the analysis to more than one 
layer is immediate. 

To understand the role of the critical layer, it is first necessary to consider the 
inviscid approximations for the solutions of linear theory. The inviscid estimates 
for the various functions Ox$,) and $2) (j = 1,2,3;  k = 1, 2) are normally 
singular at one of the critical points in the complex x3 plane, where ;il(x3) equals 
the complex phase velocity cR + ic, (for the oblique waves) or cR + ii?, (for the 
two-dimensional wave). Since I c, I and I i?, I are usually very much smaller than 
lcRl in cases of interest, these two critical points are almost coincident and lie 
very close to the real z3 axis. Explicitly, we assume that 

I C I I ,  I ~ z I  Q (~'ilc)+(4-) @+a) (4.1) 
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(see Lin 1955, chap. 8). Denoting both critical points by x3,, the inviscid estimates 
close to xgC are (see Reid 1965) 

(4.2) 
(x3 -+ 5 c 9  

R - t a ) ,  i xi1’ N q[ 1 + (D2U/DU),(x3- x&) log ( ~ 3 -  ~ 3 c ) ] +  O( ( 5 3  - ), 
Y$l) - Cj(DU);1(x3-x3,)-1+O(log 1x3-xk( ) ,  

$g) N ( -  1)k2iP(ay)-lCle(x3-x*)-l+O(log Ix3-x3,1), 

where the subscript c denotes evaluation a t  x%, the Cj are constants and we 
assume that D2U and DU are non-zero a t  x3c. We note that the singularity in Dxjl) 
depends on the existence of non-zero profile curvature (D2U 9 0) a t  the critical 
point but that Yj and $k are singular irrespective of the profile curvature. 

Direct substitution of these estimates into the integrands Yf’Fl and Y’k1)F3 of 
(3.4) and (3.5) yields singularities like (x3 - x % ) - ~  for both if the two critical points 
are treated as coincident on the real axis (the supposition that these points 
coincide is made for heuristic reasons only and is not necessary for the subsequent 
analysis). However, there is a basic difference between these two integrands on 
account of the respective domains of validity of the inviscid approximations. 
Outside a small circle of radius O[(aRDiZc)-f] centred on x&, the full inviscid 
estimates for Yjl), xjl) and $f’ (which yield (4.2) as z3+-x*) are valid asymptotic 
approximations as R -+ 00 in the sector --in < arg (x3 - x3,) < Qn of the complex 
x3 plane, whereas the corresponding inviscid estimates for the conjugate functions 
YI-pp)*, xi1)* and $PI* are valid in the sector -&n < arg(x3-x3J < in (see Lin 
1955, chap. 8; I, 8 4). Since the integrand Yi1)F3 and those in the denominators 
of (3.4) and (3.5) involve no conjugate functions, their paths of integration may 
be deformed to pass beneath the singularity at x3c; accordingly the (possibly 
complex) values of these integrals remain O( 1) as R-t co. For Yi1)F1, on the other 
hand, the functions and their conjugates are both present and the path cannot 
be deformed so as to avoid the singularity and yet have a uniformly valid inviscid 
approximation for the integrand. Instead, viscous theory must be employed to 
evaluate the integrand in the vicinity of the critical layer. [Note that when cI and 
EI are O( 1) and positive, as can be the case for velocity profiles with an inflexion 
point, an inviscid approximation remains uniformly valid for all real x3.  But the 
present analysis concerns small linear growth or decay rates satisfying (4.1)) for 
which a viscous analysis is necessary.] 

The linear viscous solutions are known as functions of the ‘inner’ variable 

2 = i(~aRDU,)*(x,-x,,) (4.3) 

and it is readily shown that the critical-layer contribution to t,he integral of 
V:)Fl is O(R) (see Reid 1965; I, 9 4).  

The derivation of asymptotic estimates for the third-order coefficients aij pro- 
ceeds similarly, but is rather more complicated since it is first necessary to obtain 
asymptotic approximations for the various second-order functions which occur 
in the qj. These functions fall into two categories: those which have time- 
periodic components and those which do not. In  the former category are the 
functions x?), @j:), xi;’ and @@, while the latter category comprises the functions 
fj, h,c, and 
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Functions in the first category may be treated by straightforward extension of 
the familiar inviscid and viscous approximations of linear theory. They are 
characterized by a thin viscous critical layer outside which inviscid estimates 
may be found (for present purposes we may ignore the thin O[(aR)-*] viscous 
wall layers near x3 = 0, 1 since it may be shown that these do not contribute 
significantly to  the interaction integrals). 

For functions in the second category, the effects of viscous diffusion are not 
necessarily confined to a thin critical layer. Indeed, for these functions, an 
'inviscid approximation' exists only for sufficiently large growth rates laCz I and 
l&czl [see (3.13) and (3.14)]. More precisely, in a time O[(ai71)-1], viscous diffusion 
penetrates a distance O[(aRCI)-*], and this is not necessarily small since the only 
restriction on cz and EI is that introduced in (4.1). This ensures the validity of the 
linear viscous approximations. In particular, if (aRCI)* < O(Z-l) viscous diffusion 
will be important throughout the flow domain (we may define I = I for channel 
Bows and 1 = 00 for boundary layers). The structure of such functions as R+oo 
therefore depends on the magnitude of cI and CI.  Among the various possibilities, 
it seems sensible to consider that which includes the case of neutrally stable 
waves: that is, we suppose that no inviscid solutions can be found, but that 
(aRcz)-) and (aRZI)-* are both O( 1)  or greater (this assumption may be relaxed, 
if required, to yield results analogous to those derived here). For instance, if 
(olRc,)-$, (aRCI)-* B I, the second-order mean-flow terms j j  and hk derive 
from a balance between viscous diffusion and the forcing terms due to non- 
linear Reynolds stresses; and acceleration terms are also absent from the 
'longitudinal vortex' denoted by x:"LZ and $i2l2. However, these terms still 
possess a 'critical-layer ' structure, since the nonlinear forcing terms them- 
selves possess inviscid approximations outside the critical layer and viscous 
approximations within it. 

We note that Benney (1961, 1964) chose to consider cases where (aRcz)-* is 
small in his analyses of non-resonant wave interactions. This leads to solutions 
proportional to (acI)-l for the mean-flow terms, outside a layer with thickness 
O[(aRcz)-i] centred on xgC. However, Benney overlooked the fact that such 
solutions are inappropriate in the critical layer (where the nonlinear forcing 
terms are given by their viscous approximations) since (aRc,)-h must remain 
gl.eater than the critical-layer thickness (aR)-* in order to satisfy condition (4.1) 
on the validity of the viscous solutions. In  fact, there should be three distinct 
regimes in this case: the outward inviscid regions, the inner critical layer and an 
intermediate layer where the forcing terms are adequately represented by 
inviscid theory but viscous diffusion of the mean flow must be retained. 

Clearly, the calculation of asymptotic approximations for all the second-order 
quantities of the present problem, and the subsequent derivation from (3.12) of 
explicit asymptotic estimates for the interaction coefficients a4r, is a lengthy and 
complicated task. Such calculations were performed by Usher (1974), to whose 
work the reader is referred for further details. However, it is a relatively simple 
matter to establish the orders of ~ a g ~ ~ ~ ~ e  with respect to R of the various 
second-order components both inside and outside the critical layer. If we are 
content with order-of-magnitude estimates rather than explicit asymptotic 
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approximations for the interaction coeficients aij, this limited objective is suffi- 
cient. This simplification retains the essential features of the results and is 
adopted here for brevity. 

5. Order-of-magnitude analysis 
When (aRcz)-4, (aREz)-4 2 O(1) inviscid estimates may be used to evaluate 

the right-hand sides of (3.13) but the diffusive terms must be retained on the 
left-hand sides. Since the inviscid estimates for Y$) and +f’ are 

where c = cR+icZ and c“ = cR+iE1 (cf. Reid 1965; I, $ 4), it may be seen that the 
right-hand sides are O(cz,Ez). This is related to the familiar result that the 
Reynolds stresses for neutral waves are constant except in the viscous regions. 
For nearly neutral waves the inviscid approximation (see Lin, chap. 8) 

where S(x) is Dirac’s delta function, is sufficient to show that 

I&&- ( -  V P h k l ,  Iaf31 = O(R) (k = 1, 2) 

outside the critical layer (we henceforth regard a, p, y and the derivatives of U 
as O(1); also, the linear solution is normalized such that the lCjl are O(1)). Inside 
the critical layer it is known that the linear solutions xjl) remain O( 1 )  but that 
D2$J, Yjl) and $;) are approximated by a Lommel function, with either Z or 
232 as argument, times a, constant O(Rf) [see I, $4, noting that the functions 
xi1), Yf), xfcl), Yt’ and @fCl) (lc = 1,2)  are denoted there by --+b3, - ia+.,, -iy+,, 
-iy+, and 0, respectively]. Using these results in (3.13), it is found that to 
highest order in R 

d“&fk - ( - l)”/3hk)/rzZ2 

= Re(2k-11Ck(2(aR)% [D2E/(DS)*]], [L(Z)]*) (Ic = 1,2),  

where Z as defined in (4.3) is purely imaginary and L(2) is the Lommel function. 
Accordingly, within the critical layer, 

Q ~ & - ( - l ) ~ P h k  N R ~ M ( Y ) + d Y + B ,  

where Y = - iZ is real and s? and 9? are constants determined by matching onto 
the O ( R )  outer solution. A corresponding result holds for f3. Clearly, 

I $af, - ( - 1 )k P h  I and I f 3  I 
are no greater than O(R) in the critical layer, but their second derivatives with 
respect to x3 are O(R4). 

The components Pfk- ( -  l), Qah,, which depend on the term D($I1)*xI1)), may 
similarly be shown to satisfy a critical-layer equation of the form 

d2((pfk- ( - l), &ahk)/dZ2 = O ( R ) ,  
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with corresponding solutions where 

) / ? f k - ( - l ) k ~ ~ h k I  = O(R), lD2(/3fk-(-1)k+Clhk)I = O(R*). 

To match onto these solutions, the inviscid solutions must have - ( - l)k4phkI 
and their first derivatives O(R). For strictly neutral waves, the second derivatives 
of the mean-flow terms& and hi must vanish outside the critical layer. The above 
results establish that, in this case, the mean-flow modifications outside the critical 
layer are O(R) functions which vary linearly with x3. This is in accord with 
physical intuition, for viscous diffusion would produce just such a flow in response 
to a constant surface stress applied at the critical layer. 

For the 'longitudinal-vortex ' components xi2L2 and $i2L2 equations (3.14) 
reveal that 

xl2LZ = O(R), $i2L2 = O(R2) 

both outside and inside the critical layer. We note that the downstream corn- 
ponent $lzlz is particularly large and represents a spanwise-periodic distortion 
of the primary velocity profile owing to convection of momentum by the x3 
velocity component yjL2. 

For the time-periodic components it is readily verified that outside the critical 
layer the functions xp', A;), xi3, y?& and $-!! (k = 1,2;  j = 1,2 ,3)  are all O(1). 
Exceptionsare yz) and 11.p) (k = 1,2),  which are seenfrom (3.1 a) and (3.15) to be 
O(/akl ) ;  that is, they are O(R) since /akl is O(R). A viscous analysis in the critical 
layer (see Usher 1974 for further details) shows that 

where 9J2 = d2/dZ2 and terms of the stated orders are functions of the inner 
variable Z only. In  addition, lower-order terms may depend on both Z and Z", 
a fact which is sometimes significant. We note that the operator D = d/dx3 may 
usually be regarded as O(R*) in the critical layer; but this is not so when the 
regular part of the inviscid solution remains dominant in the critical layer. The 
functions x'j') exemplify the latter situation; for in the critical layer xi1) = O( 1) on 
account of the regular part C, of the inviscid solution, but D2x$l) is O(R*) instead 
of O(R8). Corresponding estimates exist for the various complex-conjugate 
quantities, where, in the critical layer, dependence on 2 and Z* is interchanged. 

We now have order-of-magnitude estimates of all the terms occurring in the 
integrals in (3.12). For convenience, these are listed in table 1. These estimates 
enable one to determine the orders of magnitude of the interaction coefficients uij. 
The contributions from inside and outside the critical layer must be considered 
separately. Unlike the integrals for the second-order coefficients the contributions 
from outside the critical layer are not all O( 1) since several of the second-order 
quantities are O(R) or O(R2) there. Also, some care is necessary in dealing with the 
critical-layer contributions. Essentially these involve integrals with respect to 2 
along the imaginary axis from - ioo to + ico; and when the integrals are analytic 
functions of 2, that is, when they do not contain functions of the conjugate 

29 P L M  70 
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Orders of magnitude 
+--7 

Outer Inner 

1 1 
1 log R 
1 Rf 
1 RP 

1 R4 
1 R2 

1 R 

TABLE 1. Orders of magnitude of functions in 'outer' and 'inner' (critical layer) regions. 
Functions marked with a dagger are zero in outer regions for strictly neutral waves, but 
would be O(R) there if tho condition p~~ = 0 and its spanwise counterpart (see $2)  were 
not imposed. 

variable Z*, contour integration round the semicircle at  infinity reveals that such 
contributions are precisely zero (using the fact that L[Z] - 2-l as 121 +co in an 
appropriate sector of the complex plane, together with other similar results). 
In  fact, such integration is tantamount to indenting under the singularity at  
x3, in cases where inviscid approximations remain valid, which was discussed 
earlier. 

When terms in the integrand contain functions of both Z and Z* in the critical 
layer, or equivalently, when the domains of validity of the inviscid approxima- 
tions are such that one cannot indent underneath the singularity at xQC, it is best 
to transform to the real variable Y defined as Z = i Y ,  so that the path of integra- 
tion is along the real Y axis from - 00 to co. The integrands are rather complicated 
functions of Y involving integrals of Lommel functions (now written in the form 
LB( Y )  -ti&( Y ) )  and Airy (or modified Hankel) functions, which would require 
numerical integration. However, the R dependence is contained in multiplicative 
constants and consequently the asymptotic form of the air may be established 
for large R. 

First, we note that the orders of magnitude of the air are the same as those 
of the integrals comprising the numerators of (3.12), since the integrals in 
the denominators may be evaluated by inviscid theory on indent,ing under the 
singularity at xQC and are consequently O( I). It is then necessary to determine the 
order of magnitude of each term of the Fir, both inside and outside the critical 
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layer, using the estimates given above for the various first- and second-order 
functions. The orders of magnitude of the dominant contributions to the integrals 
of the YL1)& may then be established, taking particular care with the critical- 
layer approximations so as not to include spuriously large contributions which in 
fact vanish for reasons described above. One is eventually led to the following 
conclusions (further details being given in Usher 1974). 

The magnitudes of the interaction coefficients a,,, a22 and a33 are O(R*), the 
dominant contributions deriving from the critical layer owing to terms of Fkk 
( k  = 1,2)  containing xf) D2((Qafk - ( - l )kphk) and x(lf)* D3xiy and terms of FZ3 con- 
taining xh1)DY3 and xhl)* D3x4i). We note that, since these coefficients represent 
the third-order self-interactions of the three waves, i.e. the aij are just the respec- 
tive Landau constants, they do not depend on the existence of resonance. How- 
ever, the order-of-magnitude estimates do depend on the assumption that D2Z 
is 0(1 )  a t  xgc; if D2Zc = 0, the orders of magnitude of the [aijl will be less than 
O(Rt) .  

The coefficients a12 and a2] have magnitudes O(R2), the dominant contributions 
coming from outside the critical layer on account of terms of P12 (and P2,) which 
involve the O(R2) function q5i212 (and $i2i;) and its first two derivatives. Since 
these coefficients denote interactions between the two oblique waves only, these 
estimates too are independent of the existence of resonance. They are also insensi- 
tive to the value of D2U a t  x3c. It is worth noting that if, instead of two separate 
plane oblique waves, we had considered a single three-dimensional disturbance 
with xl, x2, t dependence of the form 2A1 ( t )  cos/3x2 exp [(Qiol(xl - c R t ) ] ,  as was done, 
for instance, by Benney (1961, 1964) and Stuart (1962), the appropriate self- 
interaction terms would have been (al, +a,,) JA,12A, (found on setting A ,  = A ] ) .  
Accordingly, the ‘Landau constant ’ for such a three-dimensional disturbance is 
O(R2) as compared with O(R8) for a plane wave, indicating that three- 
dimensionality is likely to lead to stronger self-interaction than in the 
two-dimensional case. 

For aI3, with analogous results for a23, the integrand F13Yi1’ is dominated in 
the critical layer by an O(R3) term containing a; D2x(12)Yi1). However, this term 
integrates to zero since it exhibits no dependence on 2”. The largest terms of 
q3Yi1) which depend on both 2 and Z* are O(R8) (contributed for example by 
a term xi1’D2pt’*Yi1) and the term of second-highest order from a: D2xi2)Y(1l)), 
which leads to the estimate lal3/ = O(Re). The dominant contribution from out- 
side the critical layer is alsolarge, being O(R2) on account of a term a:(D2 - y2)  xi2) 
in .&3. We conclude that lal3[ and are O(RZ), that the terms of this order 
derive from the critical layer, and that the result depends crucially on the exist- 
ence of resonance. Without resonance, terms of F13 containing the subscript 2 must 
be omitted and the dominant contributions to lal3/ and la231 appear to reduce 
to O(R). 

are O(Ri), deriving from 
the critical-layer estimates of several terms of F31 and F32 respectively. This 
result depends on resonance to the extent that the critical layers for a two- 
dimensional and an oblique wave coincide. When this is not the case, /u311 
and la321 are O(Rg). 

The dominant contributions to la3]] and 

29-2 
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We may summarize our results by re-expressing the interaction equations (1.3) 
for resonance as 

dA2/dt = & X C ~ A , + ~ , R A , A ?  + A , [ d , R 2 ~ A , ~ 2 + d , R ~ ~ A , ~ 2 + d 3 R ~ ~ A , ~ 2 ] ,  (5.1) 

dA,/dt = & z c ~ A , + ~ , R A , A ~  +A,[d,R+ IA,12+d2R* IA212+d,RgIA,12], 

dA3/dt = aEI 9, + a, A,  A ,  + A,[d,RB( I A ,  I + I A , I ,) + d, R3 I A ,  1'1, 

where the (usually complex) coefficients a,, b, and di (i = 1,2 ,  ..., 5)  are O(1). 
Without resonance, but of course with the symmetric waves A ,  and A ,  coupled 
in phase, the corresponding equations have the form 

1 

i (5.2) 

dAl /d t  = &+A, + A1[dl 124 \A, I + d, R2 \A2\ + d; R ]A3/ '1, 
dA,/dt = *"CIA, + A,[d, R2 I A ,  I + d,R+ I A , 12 + dj R I A,  121, 

dA&t = 4 ~ 4 ,  + A,[d;R+( I A I + / A 2  I ,) + d,R+ I A ,  I ,], 
where dj and d i  are O( 1) in magnitude, and similar results would apply when the 
downstream wavenumber of the oblique waves A ,  and A ,  is independent of that 
of the two-dimensional wave A,. 

Finally, we observe that, for resonant triads comprising a two-dimensional 
wave and two asymmetric plane oblique waves of differing wavenumbers and 
frequencies (but such that their respective exponents i O j  satisfy 8, + 8, = 8,), the 
orders of magnitude of most of the interaction coefficients are reduced from those 
of (5.1). In  this case, the critical layers of the three waves are distinct and it is 
usually possible to indent under or over the respective singularities when evalu- 
ating the integrals. The second-order coefficients ai are then all O(1) and the 
third-order coefficients adi are of the same magnitude as those in (5.2). 

We emphasize that the above results concern only the asymptotic f o r m  of the 
interaction coefficients for large values of R, when the other parameters a, p, y,  cR 
and the first two derivatives ofii  at  xaC are regarded as O(1) quantities. Further 
conditions required for the validity of the perturbation analysis are discussed in 
the following section. 

6. Discussion 

or (5.2) to hold. These are the explicit assumptions 
First, we state the various conditions which must be satisfied for results (5.1) 

(i) a, P, y, 1%1, pq = O(l) ,  
(ii) 
(iii) R4 9 1, 

(iv) lcn-U(0)I ,  IcE-U(Z)I 9 R-4, 

lcIl, aR IEIl < O( I) ,  

and, implicitly, the conditions 

which ensure that the critical layer remains distinct from the viscous wall layers. 
We note that (ii) may be relaxed if required provided that (4.1) remains satisfied. 
A further restriction on the validity of the linear viscous approximations in the 
critical layer is (see Benney & Bergeron 1969; Davis 1969) 

(v) lAjl RP < 1 ( j  = 1,2,3) .  
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Conditions (i)-(v) must be satisfied for both the resonant and the non-resonant 
case. 

Further necessary conditions may be inferred from (5.1) and (5.2) respec- 
tively for the resonant and non-resonant cases. Essentially, we require 
IA;ldA,/dtI ( i  = 1,2,3)  to be small compared with unity in order that the 
amplitude modulation owing to nonlinear effects takes place on a time scale 
long compared with LlV, where L and V are the characteristic length and 
velocity scales used for non-dimensionalization (typically, L is the channel 
width or boundary-layer thickness and V the maximum flow velocity). For 
simplicity, we suppose that A,  and A ,  are of the same order of magnitude, 
say Al,2. Then, for the second-order terms of (5.1) to be sufficiently small, it is 
necessary that 

and for the third-order terms of (5.1), that 

Without resonance, the corresponding conditions from (5.2) are 

We observe that, strictly speaking, these conditions are necessary but not suffi- 
cient to ensure that IA?ldA,/dtl < 1 since the orders of magnitude with respect 
to R of the omitted higher-order terms of the perturbation series are unknown, 
and it has not been established that these series are asymptotic. We expect that 
no more stringent conditions are required than those above, in order to ensure 
that the largest nonlinear terms have been retained, but we acknowledge that 
some uncertainty remains. 

A more formal asymptotic analysis than ours might be constructed by scaling 
the wave amplitudes Aj  and linear growth rates *acI and aEI as appropriate 
negative powers of R, introducing multiple time scales as required and finally 
retaining only the leading-order terms in each of the amplitude equations as 
R+m.  However, various different scalings are possible, and the analysis of each 
case of interest would probably be even more formidable than our own far-from- 
trivial (!) third-order analysis. In  particular, if one hoped to justify retaining 
certain third-order terms while neglecting all fourth- and higher-order ones, the 
analysis would have to be pursued to at  least fourth order in the wave amplitudes. 
From our experience of the third-order analysis, we conclude that such a venture 
would be ill advised. 

However, we set down two illustrative examples of scaled equations. In  these, 
the stated orders of magnitude refer only to those omitted terms of up to (and 
including) third order in the wave amplitudes. On defining Bi = R$A, (i  = 1,2 ,3)  
and r = R-ft, regarding Bi and r as 0(1) ,  equations (5.1) reduce to 

(Vi) RIA,], ]A?,2/A31 1, 

(vii) R21A1,212, RZIA312 < 1.  

(vi)’ R2 lAl,212, Rf < 1. 

dB2/dr = b,B,BT +O(R-*) (R+w), 
dB,/dT = b,B,B; +O(R-*) i dB3ld.r = O(uEIRf, R-l) 

where aEIR* < O(R-*) in virtue of condition (ii). For this case, B, remains con- 
stant on the time scale r while, with appropriately chosen initial phases, both 
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lBll and I B,J grow like exp Ib, B,I r. The second example is given by the scaling 
B, = RgA, (k = 1, 2 ) ,  B3 = R2A, and r = R-It, which leads to 

dB,/dr = ~B,+b,B,B~+d,B,~B,]2+O(R-~) (R-+co) 
dB,/dr = crB, + b, B, Bg + d, B, I B,I + O(R-8) 

dB,ldr = 3B3 + u3 B, B, + O(R-*) 

from (5.1)) where cr = +acrR and 3 = aEIR. If 1cr1 and 131 are O(1) the oblique 
waves experience first-, second- and third-order contributions of comparable 
magnitudes, while the two-dimensional wave is adequately described by second- 
order theory. 

The predictions in the present paper (and in I and 11) of the sizes of the various 
interaction coefficients can be tested to  some extent by comparison with existing 
results which have been computed for particular flows. For the second-order 
coefficients ai (i = 1,2 ,3)  no previously published results exist, and work is a t  
present in hand by Professor R.E.Kelly to compute these for Blasius flow a t  
various values of R. Some early results obtained by Dr F. Hendriks and Professor 
Kelly are described in the appendix, by Dr Hendriks. These are for a fixed 
Reynolds number (based on displacement thickness) of 882 and concern six 
separate symmetric resonant triads. It may be seen from table 2 that, a t  the 
higher wavenumbers, the magnitude of the coefficient a, ( =  a,) for the oblique 
waves is substantially larger (by a factor of about 30 for a = 0.5) than that of 
the two-dimensional coefficient a,. This is in qualitative agreement with our 
results. That this is not so markedly the case at  small wavenumbers is to be 
expected, for aR is only 88.2 for a = 0.1 and the conditions for validity of the 
asymptotic theory are not met. Indeed, for Blasius flow, the Reynolds numbers 
of interest are probably not large enough to encourage great confidence in asymp- 
totic theory; nevertheless, the qualitative agreement with our results is most 
encouraging. 

The third-order coefficients uii (i = 1, 2,3)  are just the Landau constants for 
the respective plane waves, for which we have predicted an O(R*) dependence. 
No numerical results exist for any other of the uij, but Reynolds & Potter (1967) 
tabulate several values of uii for Poiseuille and for Couette-Poiseuille flow. 
Unfortunately, only a few results are quoted for fixed a but different values of R, 
and no meaningful comparison can be made for Couette-Poiseuille flow. For plane 
Poiseuille flow, extensive tables of aiX as a function of LX and R are given by Pekeris 
& Shkoller (1967). We have displayed their data in figure 1 as curves of laiil 
zgainst aR with logarithmic scales, a t  constant values of CI. Reynolds & Potter’s 
few points are in good agreement, but are not shown. 

It may be seen that, except a t  small wavenumbers (when our asymptotic 
analysis is invalid), the value of (uiil increases strongly with R. To allow com- 
parison with our predicted O(R*) dependence, we have superposed dashed curves 
with gradient 8.  There is general agreement with the gradients of the computed 
data. Complete agreement would be too much to expect, for laii( depends on the 
location of the critical layer, as well as explicitly on R, and as R changes with 
a fixed this location changes. However, this comparison gives a convincing 
demonstration of the relevance of our asymptotic analysis. 

1 
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FIGURE 1. Comparison with results for plane Poiseuille flow: laii\ ws. aR for various values 
of a. -, drawn through Pekeris & Shkoller’s data, with logarithmic scales; ---, gradient 
of 9 predicted by asymptotic theory. 

Equations (5.1) and (5.2) and the corresponding equations for asymmetric 
resonant triads shed considerable light on the roles of resonance and of three- 
dimensionality in the nonlinear stability of parallel flows. The following remarks 
relate to situations where conditions (i)-(vii) or (i)-(vi’) are met. 

A disturbance which, a t  first order, is a single plane wave satisfies an equation 
of the form (1.1),  where we have shown that Ihl = O(Rt) for large R. If, instead, 
the first-order disturbance is three-dimensional, with xl, x2, t dependence like 
A(t)cos~x,exp[ia(x,-c,t)], an equation of the same form as (1.1) is again 
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satisfied; but now (A1 = O(R2) for large R (this is just the special case A,  = 0, 
A ,  = A ,  of (5.2)). More generally, third-order interaction coefficients O(R2) will 
arise whenever the first-order disturbance contains among it,s Fourier components 
a symmetric pair of (not necessarily equal) oblique plane waves. 

That there are coefficients as large as O(R2) is at first sight surprising, and 
derives from the fact that the downstream component associated with the second- 
order spanwise-periodic ‘longitudinal vortex’ is O(R2). It is clear that three- 
dimensionality increases the strength of third -order interactions. Whether their 
effect is to enhance or inhibit the growth of disturbance energy is not indicated 
by the present analysis since estimates of the phases of the complex interaction 
coefficients are not available. 

For asymmetric resonant triads, for which the three critical layers are distinct, 
the results are not particularly striking. One merely adds appropriate second- 
order terms with O(1) interaction coefficients ad (i = 1,2 ,3)  to (5.2). With 
symmetric resonant triads, on the other hand, the changes are substantial. For the 
oblique waves, the second-order coefficients a, and a2 become O ( R )  and the third- 
order coefficients a13 and uZ3 increase to O(R%), essentially because of the ‘super- 
position of critical layers ’. For the two-dimensional wave, the coefficients a31 and 
u32 also increase, but less dramatically, from O(R4) to O(R*). Consequently, not 
only are strong second-order interactions introduced by such resonance, but the 
strength of the third-order interactions is also enhanced. 

That there are larger interaction coefficients for oblique waves than for a two- 
dimensional wave, both with and without resonance, has important implications, 
for the possibility arises of preferential growth of the three-dimensional com- 
ponents. Clearly, this must sometimes occur, but firm conclusions must await 
detailed analyses of particular problems incorporating the phases of the inter- 
action coefficients. 

There are indications that (5.1) may sometimes play an especially important 
part in promoting subcritical instability (i.e. for R < R,, the critical Reynolds 
number). In  particular, it is likely that a three-wave resonant instability may 
occur with smaller initial disturbances than those necessary to yield growing 
(single-wave) solutions of (1 .1)  with A, > 0, and it is possible that such sub- 
critical instability may also take place when A, < 0 (see Craik 1975). 

It is perhaps worth noting that the very different ‘kinematic-wave ’ analysis 
by Landahl (1972), of a small-scale secondary wave riding on a large-scale 
inhomogeneity in a shear flow, is not unconnected with the present problem. For, 
regarding the large-scale inhomogeneity as a long wave with wavenumber a, and 
frequency w,, Landahl discovers that ‘focusing ’ of the secondary wave train 
takes place near the primary wave crest when the secondary-wave group velocity 
cg is close to the phase velocity wl/al of the long wave (a similar phenomenon, in 
an oceanographic context, was studied by Gargett & Hughes 1972). On regarding 
the secondary wave train not as a single component but as two components with 
nearly equal wavenumbers aa and as (> a,) and frequencies w, and w3 (B w l ) ,  
the group velocity cg is well approximated by cg 3 awlaa R (w3- w2) / (a3 -a2 ) .  

Now, if we choose the small difference a3-a2 to be just a,, the ‘focusing’ 
condition cg = wl/al yields w 3 - w 2  = w,. That is to say, focusing occurs when 
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the three waves form a resonant triad such that w3 - w2 = w1 and clg - a2 = a,. 
(We are grateful to Dr M. A. S. Ross of Edinburgh University for pointing this 
out to us.) 

We further mention that the present work deals with situations not covered 
by the analyses of Hocking et al. (1972) and DiPrima, Eckhaus & Segel (1971). 
The validity of the present analysis is not restricted to the immediate locality of 
the critical Reynolds number R,; instead, we require that R is large and that the 
linear amplification rates are sufficiently small that conditions (ii) are met. Also, 
while the analyses of Hocking et al. and DiPrima et al. concern the nonlinear 
evolution of predominantly two-dimensional disturbances (in the analysis of 
Hocking et al. the disturbance is dominated by a single plane-wave mode by the 
time that nonlinear effects are felt), the present analysis examines inherently 
three-dimensional disturbances for cases where three wave modes remain of 
comparable importance. The possibility of resonance among wave modes is 
excluded in the former studies, but is a major feature of the present work. Exten- 
sion of the present analysis to incorporate spatial as well as temporal evolution 
of the waves, as was done by Hocking et al., appears to  be feasible but is not 
pursued here. 

Our results call into question the relevance of linear estimates of the growth 
rates of plane waves at large R, at least in cases where those estimates satisfy 
condition (4.1). For, in view of the increasing strength of the nonlinear terms as 
R increases, the range of validity of the linear results is restricted to ever smaller 
wave amplitudes. At sufficiently large R, the permissible amplitudes are probably 
unrealistically small. 

Our analysis raises similar doubts concerning the practical ranges of validity 
of all nonlinear analyses which employ expansions in ascending powers of wave 
amplitude. Formally, such analyses may be valid for a particular asymptotic 
limit: for instance, Hocking et al. and others use a small parameter e proportional 
to R - R,, where R, is the critical Reynolds number, and envisage the limit e + 0. 
But, in addition, there is a strong hope that the results of such analyses will 
remain good approximations for all ‘reasonably small’ values of the governing 
parameter (and hence the wave amplitudes). However, if the governing para- 
meter does not adequately account for the Reynolds-number dependence of the 
nonlinear interaction coefficients, the words ‘reasonably small ’ demand careful 
interpretation. 

To demonstrate this point, consider the Landau-type equation 

A = €A+hIA12A, 

where 6 may be thought of as proportional to R - R,, and R, is a large number. 
In  the limit E -+ 0, we suppose that this equation is formally valid for amplitudes 
\A\ which are O(e*). But, if the magnitude \A\  of the Landau constant is itself 
large, say O(Rn), and if we are in fact interested in smallfinite values of e which 
are O(R-S), then the equation is not necessarily a valid approximation when [ A  I 
is O(e4). Instead, the linear and second-order terms are in balance when 1.41 is 
O(Rd@+s)), and higher-order terms must be examined to determine whether they 
remain acceptably small. This is not just a mathematical restriction on the range 
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N 

a P Y C c a1 a3 

0.1000 0.0617 0.0794 0.2859 0.2859 0.5473 0.6079 

0.2000 0.1209 0.1569 0.3394 0.3394 3.7350 0.0083 

0.2540 0.1480 0.1950 0.3570 0.3570 6,0745 0.3036 

0.3000 0.1705 0.2271 0.3685 0.3685 8.8249 0.4305 

0.4000 0.2098 0.2891 0.3846 0.3846 18.8784 0.4962 

0.5000 0.1911 0.3147 0.3834 0.3834 29.5892 0.0129 

- 0.0461i - 0'0888i + 0,7013; + 0.5563; 

+ 0.0041i - 0'0294i + 1.17571, - 0.24713 

+ 0.0102i - 0.0122i + 0.64993 - 0.3394; 

+0.00831, -0.0033i - 0.14953 -0.32173 

-0.0107; + 0.003% - 3.7073; - 0.40813 

- 0.04441 + 0.0047; - 6.0644; - 0.9701i 

TABLE 2. Resonant triads, eigenvalues and second-order interaction coefficients 
for Blasius flow at R = 882 

of validity of nonlinear analyses at large R, rather it is an indication of the 
increasing physical role of nonlinearity as R increases. 

Our major qualitative conclusions may be summarized as follows. 
(if At large R, the influence of nonlinearity on the temporal evolution of 

wavelike disturbances is remarkably strong. 
(ii) For a three-dimensional disturbance, this influence is much greater than 

for a two-dimensional disturbance of comparable amplitude. 
(iii) Symmetric resonance at  second order yields even larger nonlinear 

contributions. 
(iv) Three-dimensionality is likely to develop very rapidly in unstable shear 

flows at  large R. 
(v) The surprising strength of the nonlinear interactions, which increases 

with R, limits the probable ranges of validity of linear theory and of amplitude- 
expansion techniques to smaller amplitudes than was previously supposed. 

We wish to acknowledge helpful comments from Dr M. A. S. Ross, Professor 
K. Stewartson and Professor J. T. Stuart. We are particularly grateful to 
Professor R.E.Kelly and Dr F.Hendriks for supplying us with the results 
described in the appendix. One of us (J.R.U.) was supported by an S.R.C. 
Research Studentship while part of this work was performed. 

Appendix 
By F. HENDRIKS 

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 

To support the analysis of the mechanism of nonlinear resonant interactions, the 
second-order interaction coefficients a, and a, were computed for Blasius flow 
at R = 882 (based on displacement thickness and free-stream velocity). The 
selected triads and the corresponding values of a, and a, are given in table 2. 

In  order to compute interaction coefficients, the search for an oblique wave that 
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x‘l’ 
I ?  
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-1 x3 

FIGURE 2. Eigenfunctions at a = 0.5, R = 882. (a) p = 0.1911. (b) p = 0. 
Normalization: xT)(5) = 1 ( k  = 1 ,  2). 

10 - - 
-Imaginary 

FIGURE 3. Adjoint eigenfunctions at a = 0.5, R = 882. (a) /3 = 0.1911. (b) p = 0. 
Normalization: YF’(5) = 1 ( k  = I ,  2). 

FIGURE 4. Solution to  the cross-flow equation (2 .6b ) .  

will form a resonant triad with a given two-dimensional wave must be carried out 
first. I n  the present case this was done by a numerical search in the avs. R 
stability diagram along a line of constant phase velocity until the two- 
dimensional counterpart (Squire’s theorem) of the desired oblique wave was 
found. The search was speeded up by the use of Lagrange interpolation. The 
method used in solving the linear eigenvalue problems and their adjoints was 
integration with a fourth-order Runge-Kutta scheme combined with Gram- 
Schmidt orthonormalization after every integration step. This popular technique 
for treating the ‘parasitic growth ’ problem emphasizes satisfaction of the ejgen- 
value criterion at the wall, while the eigenfunction need not be determined until 
it is called for. Figures 2 and 3 show the eigenfunctions and adjoint eigenfunctions 
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FIGURE 5. Second-order function Fl associated with resonance in the 
oblique wave, defined in (3.2). 

-300 

FIGURE 6. Second-order function F3 associated with resonance of the 
two-dimensional wave, defined in (3.3). 

of the linear stability problem for u = 0.5, both for the two-dimensional wave 
and its oblique companion. The normalization adopted is /y( i)(5) = Yfi’(5) = 1 
(k = 1,2 ,3) .  The flow field in an oblique wave is three-dimensional but indepen- 
dent of the co-ordinate along the crest of the wave. The cross-flow follows from 
the solution ~ i l ’  to (2 .6b ) .  This equation is inhomogeneous and, not surprisingly, 
also suffers from parasitic growth problems, in this case between the homogeneous 
a.nd a particular solution. Standard purification techniques apply, except for the 
fact that it is not possible to scale the particular solution. Instead, the norms of 
the homogeneous and particular solution vectors are kept identical in the usual 
side-by-side integration. One of the homogeneous solutions grows towards the 
wall and it is this function that is prevented from becoming part of the particular 
solution. The proper combination of the particular and homogeneous solution, the 
function @il), is shown in figure 4. The second-order functions Pl and P3in (3.2) 
and (3.3) are plotted in figures 5 and 6. Finally, the solvability conditions (3.4) 
and (3.5) yield the desired second-order interaction coefficients in table 2. 

The purpose of scanning a number of triads at fixed R was to investigate 
whether there might exist a preferred spanwise wavenumber based on second- 
order effects. The data presented here do not support this suggestion sufficiently. 
The only point in its favour is a local maximum near u = 0.2 of the ratio of the 
magnitudes of a, and a3, but it has been pointed out earlier by Craik (1971) that 
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another candidate for a preferred /3 is simply the one which forms a resonant triad 
with the most unstable disturbance at first order. 

The computations were carried out on an IBM 360/91 computer of the Campus 
Computing Network at  the University of California at  Los Angeles and supported 
by grant D-31-124-72-G-168 of the Army Research Office, Durham, North 
Carolina, while the author was a postgraduate research engineer under Dr R. E. 
Kelly. 
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